Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
JAMA Netw Open ; 6(5): e2314291, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2325464

ABSTRACT

Importance: Cardiac dysfunction and myocarditis have emerged as serious complications of multisystem inflammatory syndrome in children (MIS-C) and vaccines against SARS-CoV-2. Understanding the role of autoantibodies in these conditions is essential for guiding MIS-C management and vaccination strategies in children. Objective: To investigate the presence of anticardiac autoantibodies in MIS-C or COVID-19 vaccine-induced myocarditis. Design, Setting, and Participants: This diagnostic study included children with acute MIS-C or acute vaccine myocarditis, adults with myocarditis or inflammatory cardiomyopathy, healthy children prior to the COVID-19 pandemic, and healthy COVID-19 vaccinated adults. Participants were recruited into research studies in the US, United Kingdom, and Austria starting January 2021. Immunoglobulin G (IgG), IgM, and IgA anticardiac autoantibodies were identified with immunofluorescence staining of left ventricular myocardial tissue from 2 human donors treated with sera from patients and controls. Secondary antibodies were fluorescein isothiocyanate-conjugated antihuman IgG, IgM, and IgA. Images were taken for detection of specific IgG, IgM, and IgA deposits and measurement of fluorescein isothiocyanate fluorescence intensity. Data were analyzed through March 10, 2023. Main Outcomes and Measures: IgG, IgM and IgA antibody binding to cardiac tissue. Results: By cohort, there were a total of 10 children with MIS-C (median [IQR] age, 10 [13-14] years; 6 male), 10 with vaccine myocarditis (median age, 15 [14-16] years; 10 male), 8 adults with myocarditis or inflammatory cardiomyopathy (median age, 55 [46-63] years; 6 male), 10 healthy pediatric controls (median age, 8 [13-14] years; 5 male), and 10 healthy vaccinated adults (all older than 21 years, 5 male). No antibody binding above background was observed in human cardiac tissue treated with sera from pediatric patients with MIS-C or vaccine myocarditis. One of the 8 adult patients with myocarditis or cardiomyopathy had positive IgG staining with raised fluorescence intensity (median [IQR] intensity, 11 060 [10 223-11 858] AU). There were no significant differences in median fluorescence intensity in all other patient cohorts compared with controls for IgG (MIS-C, 6033 [5834-6756] AU; vaccine myocarditis, 6392 [5710-6836] AU; adult myocarditis or inflammatory cardiomyopathy, 5688 [5277-5990] AU; healthy pediatric controls, 6235 [5924-6708] AU; healthy vaccinated adults, 7000 [6423-7739] AU), IgM (MIS-C, 3354 [3110-4043] AU; vaccine myocarditis, 3843 [3288-4748] AU; healthy pediatric controls, 3436 [3313-4237] AU; healthy vaccinated adults, 3543 [2997-4607] AU) and IgA (MIS-C, 3559 [2788-4466] AU; vaccine myocarditis, 4389 [2393-4780] AU; healthy pediatric controls, 3436 [2425-4077] AU; healthy vaccinated adults, 4561 [3164-6309] AU). Conclusions and Relevance: This etiological diagnostic study found no evidence of antibodies from MIS-C and COVID-19 vaccine myocarditis serum binding cardiac tissue, suggesting that the cardiac pathology in both conditions is unlikely to be driven by direct anticardiac antibody-mediated mechanisms.


Subject(s)
COVID-19 , Myocarditis , Adult , Humans , Male , Child , Adolescent , Middle Aged , Myocarditis/etiology , COVID-19 Vaccines/adverse effects , Autoantibodies , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Vaccination , Immunoglobulin G , Immunoglobulin A , Fluoresceins , Immunoglobulin M
2.
Environ Sci Technol ; 56(18): 13245-13253, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2016515

ABSTRACT

Wastewater-based surveillance of the COVID-19 pandemic holds great promise; however, a point-of-use detection method for SARS-CoV-2 in wastewater is lacking. Here, a portable paper device based on CRISPR/Cas12a and reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with excellent sensitivity and specificity was developed for SARS-CoV-2 detection in wastewater. Three primer sets of RT-LAMP and guide RNAs (gRNAs) that could lead Cas12a to recognize target genes via base pairing were used to perform the high-fidelity RT-LAMP to detect the N, E, and S genes of SARS-CoV-2. Due to the trans-cleavage activity of CRISPR/Cas12a after high-fidelity amplicon recognition, carboxyfluorescein-ssDNA-Black Hole Quencher-1 and carboxyfluorescein-ssDNA-biotin probes were adopted to realize different visualization pathways via a fluorescence or lateral flow analysis, respectively. The reactions were integrated into a paper device for simultaneously detecting the N, E, and S genes with limits of detection (LODs) of 25, 310, and 10 copies/mL, respectively. The device achieved a semiquantitative analysis from 0 to 310 copies/mL due to the different LODs of the three genes. Blind experiments demonstrated that the device was suitable for wastewater analysis with 97.7% sensitivity and 82% semiquantitative accuracy. This is the first semiquantitative endpoint detection of SARS-CoV-2 in wastewater via different LODs, demonstrating a promising point-of-use method for wastewater-based surveillance.


Subject(s)
SARS-CoV-2 , Wastewater , Biotin/genetics , CRISPR-Cas Systems , Fluoresceins , Nucleic Acid Amplification Techniques , Pandemics , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Wastewater/virology
3.
Talanta ; 246: 123429, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1768562

ABSTRACT

Viral infection has been one of the major health issues for human life. The real-time reverse transcription polymerase chain reaction (RT-PCR)-based detection has primarily been used for virus detection as a highly reliable procedure. However, it is a relatively long and multi-stage process. In addition, required skilled personnel and complex instrumentation presents difficulties in large scale monitoring efforts. Therefore, we report here a direct and fast detection method for CoV-2 genome as applied in the nose-throat swab samples without any further processing. The detection principle is based on fluorescein-loaded mesoporous silica nanoparticles capped by specific gene sequences probes immobilized on the surface of the nanoparticles. Upon hybridization with the target viral genome, the fluorescein molecules were released from the mesopores. Testing with synthetic oligonucleotides, the NSP12 gene-based detection resulted in a strong signal. Target detection time could be optimized to 15 min and the limit of detection was 1.4 RFU with 84% sensitivity with clinical samples (n = 43).


Subject(s)
COVID-19 , Nanoparticles , Fluoresceins , Humans , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity , Silicon Dioxide
4.
J Biol Chem ; 298(4): 101739, 2022 04.
Article in English | MEDLINE | ID: covidwho-1693313

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a global threat to human health has highlighted the need for the development of novel therapies targeting current and emerging coronaviruses with pandemic potential. The coronavirus main protease (Mpro, also called 3CLpro) is a validated drug target against coronaviruses and has been heavily studied since the emergence of SARS-CoV-2 in late 2019. Here, we report the biophysical and enzymatic characterization of native Mpro, then characterize the steady-state kinetics of several commonly used FRET substrates, fluorogenic substrates, and six of the 11 reported SARS-CoV-2 polyprotein cleavage sequences. We then assessed the suitability of these substrates for high-throughput screening. Guided by our assessment of these substrates, we developed an improved 5-carboxyfluorescein-based FRET substrate, which is better suited for high-throughput screening and is less susceptible to interference and false positives than existing substrates. This study provides a useful framework for the design of coronavirus Mpro enzyme assays to facilitate the discovery and development of therapies targeting Mpro.


Subject(s)
Coronavirus 3C Proteases , Enzyme Assays , Fluoresceins , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Enzyme Assays/methods , Fluoresceins/chemistry , Fluoresceins/metabolism , High-Throughput Screening Assays , Humans , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , COVID-19 Drug Treatment
5.
Ocul Immunol Inflamm ; 30(5): 1218-1221, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1671883

ABSTRACT

METHOD: We report a case of bilateral panuveitis and its resolution based on multimodal retinal images after she was administered the first dose of a viral vector-based vaccine against SARS-CoV-2. CASE REPORT: A 72-year-old woman complained of bilateral blurred vision with headache, neck stiffness, and tinnitus 3 days after receiving the first dose of the ChAdOx1 nCoV-19 vaccine. Initial examination revealed anterior chamber reactions, left optic disc hyperemia, and bilateral chorioretinal folds with choroidal thickening. Fluorescein and indocyanine green angiography revealed bilateral choroiditis and papillitis. Systemic steroid therapy dramatically alleviated panuveitis and meningeal signs. No recurrence was noted until 3 months after discontinuation of steroids. CONCLUSIONS: Bilateral panuveitis mimicking Vogt-Koyanagi-Harada disease can develop shortly after the first dose of the ChAdOx1 nCoV-19 vaccine. Ophthalmologists should consider bilateral panuveitis as a presumed post-vaccination adverse event. Systemic steroid therapy may be effective for the nCoV-19 vaccine-associated panuveitis.


Subject(s)
COVID-19 Vaccines , COVID-19 , Panuveitis , Uveomeningoencephalitic Syndrome , Aged , Female , Humans , ChAdOx1 nCoV-19 , COVID-19 Vaccines/adverse effects , Fluorescein Angiography/methods , Fluoresceins/therapeutic use , Indocyanine Green , Panuveitis/chemically induced , Panuveitis/diagnosis , Panuveitis/drug therapy , SARS-CoV-2 , Uveomeningoencephalitic Syndrome/diagnosis , Uveomeningoencephalitic Syndrome/drug therapy
6.
Sci Rep ; 11(1): 21723, 2021 11 05.
Article in English | MEDLINE | ID: covidwho-1503978

ABSTRACT

Coronavirus with intact infectivity attached to PPE surfaces pose significant threat to the spread of COVID-19. We tested the hypothesis that an electroceutical fabric, generating weak potential difference of 0.5 V, disrupts the infectivity of coronavirus upon contact by destabilizing the electrokinetic properties of the virion. Porcine respiratory coronavirus AR310 particles (105) were placed in direct contact with the fabric for 1 or 5 min. Following one minute of contact, zeta potential of the porcine coronavirus was significantly lowered indicating destabilization of its electrokinetic properties. Size-distribution plot showed appearance of aggregation of the virus. Testing of the cytopathic effects of the virus showed eradication of infectivity as quantitatively assessed by PI-calcein and MTT cell viability tests. This work provides the rationale to consider the studied electroceutical fabric, or other materials with comparable property, as material of choice for the development of PPE in the fight against COVID-19.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Electrochemistry/methods , Textiles , Animals , Anti-Infective Agents , Body Fluids , Cell Line , Cell Survival , Fluoresceins , Humans , Hydrogen Peroxide , Kinetics , Nanoparticles , Propidium , SARS-CoV-2 , Swine , Temperature , Tetrazolium Salts , Thiazoles , Virion , Wound Healing
7.
Cell Rep ; 33(2): 108254, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-812312

ABSTRACT

Development of specific antiviral agents is an urgent unmet need for SARS-coronavirus 2 (SARS-CoV-2) infection. This study focuses on host proteases that proteolytically activate the SARS-CoV-2 spike protein, critical for its fusion after binding to angiotensin-converting enzyme 2 (ACE2), as antiviral targets. We first validate cleavage at a putative furin substrate motif at SARS-CoV-2 spikes by expressing it in VeroE6 cells and find prominent syncytium formation. Cleavage and the syncytium are abolished by treatment with the furin inhibitors decanoyl-RVKR-chloromethylketone (CMK) and naphthofluorescein, but not by the transmembrane protease serine 2 (TMPRSS2) inhibitor camostat. CMK and naphthofluorescein show antiviral effects on SARS-CoV-2-infected cells by decreasing virus production and cytopathic effects. Further analysis reveals that, similar to camostat, CMK blocks virus entry, but it further suppresses cleavage of spikes and the syncytium. Naphthofluorescein acts primarily by suppressing viral RNA transcription. Therefore, furin inhibitors may be promising antiviral agents for prevention and treatment of SARS-CoV-2 infection.


Subject(s)
Amino Acid Chloromethyl Ketones/pharmacology , Antiviral Agents/pharmacology , Fluoresceins/pharmacology , Furin/antagonists & inhibitors , Protease Inhibitors/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication , Animals , Betacoronavirus/drug effects , Betacoronavirus/metabolism , Betacoronavirus/physiology , Chlorocebus aethiops , Humans , Proteolysis , SARS-CoV-2 , Vero Cells
8.
Emerg Infect Dis ; 26(8)2020 Aug.
Article in English | MEDLINE | ID: covidwho-245493

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the etiologic agent associated with coronavirus disease, which emerged in late 2019. In response, we developed a diagnostic panel consisting of 3 real-time reverse transcription PCR assays targeting the nucleocapsid gene and evaluated use of these assays for detecting SARS-CoV-2 infection. All assays demonstrated a linear dynamic range of 8 orders of magnitude and an analytical limit of detection of 5 copies/reaction of quantified RNA transcripts and 1 x 10-1.5 50% tissue culture infectious dose/mL of cell-cultured SARS-CoV-2. All assays performed comparably with nasopharyngeal and oropharyngeal secretions, serum, and fecal specimens spiked with cultured virus. We obtained no false-positive amplifications with other human coronaviruses or common respiratory pathogens. Results from all 3 assays were highly correlated during clinical specimen testing. On February 4, 2020, the Food and Drug Administration issued an Emergency Use Authorization to enable emergency use of this panel.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Nucleocapsid Proteins/genetics , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Biomarkers/analysis , COVID-19 , Centers for Disease Control and Prevention, U.S. , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , DNA Primers/chemical synthesis , DNA Primers/genetics , Feces/virology , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Humans , Limit of Detection , Nasopharynx/virology , Pandemics , Phosphoproteins , Pneumonia, Viral/virology , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , SARS-CoV-2 , Sputum/virology , United States
SELECTION OF CITATIONS
SEARCH DETAIL